inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bikshandarkoil R. Srinivasan,^a Martha Poisot,^b Christian Näther^b* and Wolfgang Bensch^b

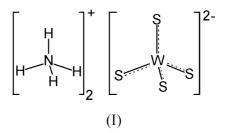
^aDepartment of Chemistry, Goa University PO, Goa 403 206, India, and ^bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (W–S) = 0.001 Å R factor = 0.018 wR factor = 0.048 Data-to-parameter ratio = 25.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. A low-temperature structure determination of the title compound, $(NH_4)_2[WS_4]$, indicates several short $N-H\cdots S$ contacts between the two crystallographically independent ammonium cations and the tetrahedral $[WS_4]^{2-}$ anions, which are all located on crystallographic mirror planes.


Diammonium tetrathiotungstate(VI),

(NH₄)₂[WS₄], at 150 K

Received 17 September 2004 Accepted 23 September 2004 Online 9 October 2004

Comment

In recent work, it has been shown that the $(NH_4)^+$ ion significantly influences the chemical behaviour of $[MOS_4]^{2-}$; this has been attributed to hydrogen-bonding interactions between the cations and anions in $(NH_4)_2[MOS_4]$ (Schwarz *et al.*, 2003). In view of our recent interest in the chemistry of tetrathiotungstates (Srinivasan *et al.*, 2003), we have redetermined the structure of diammonium tetrathiotungstate at low temperature. The title compound, (I), is isostructural with $(NH_4)_2[MOS_4]$ (Lapasset *et al.*, 1976), Cs₂[MOS₄] (Raymond *et al.*, 1995), Rb₂[MOS₄] (Ellermeier *et al.*, 1999), K₂[MOS₄] (Emirdag-Eanes & Ibers, 2001) and Rb₂[WS₄] (Yao & Ibers, 2004). The cell constants and space group for (I) are consistent with earlier results determined from oscillation photographs (Sasvári, 1963). In contrast with the older work, we have located the H atoms.

The asymmetric unit of (I) consists of halves of a tetrahedral $[WS_4]^{2-}$ ion and two crystallographically independent ammonium cations, which are all located on crystallographic mirror planes (Fig. 1). The W-S distances range from 2.1856 (11) to 2.2090 (10) Å (Table 1) and are comparable with those of 2.171 (2)-2.205 (2) Å recently reported for $Rb_2[WS_4]$ (Yao & Ibers, 2004). In the crystal structure, anions and cations are linked via N-H···S hydrogen bonding (Fig. 2). No disordering of the H atoms in the NH_4^+ ion is found in (I), unlike in the corresponding Mo analogue, where the H atoms are disordered over two orientations of both NH_4^+ cations (Schwarz *et al.*, 2003). Several short N-H···S contacts, with H. · · S ranging from 2.57 to 3.03 Å, are observed between the cations and the anions, which are comparable with those of 2.55–3.02 Å reported for the Mo analogue (Table 2). The $N \cdot \cdot \cdot S$ distances for one of the cations fall in the

 ${\ensuremath{\mathbb C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

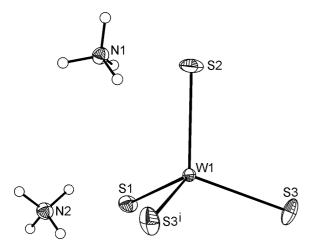
inorganic papers

Mo $K\alpha$ radiation Cell parameters from 7250

reflections

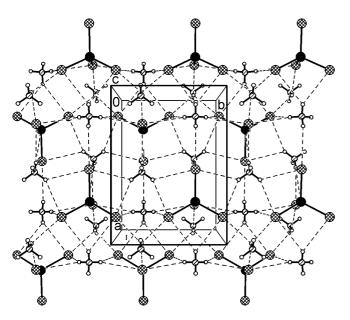
962 reflections with $I > 2\sigma(I)$

 $\theta = 10-25^{\circ}$ $\mu = 14.97 \text{ mm}^{-1}$ T = 150 (2) KBlock, yellow $0.10\,\times\,0.09\,\times\,0.08~\mathrm{mm}$


 $R_{\rm int}=0.032$

 $\theta_{\rm max} = 27.9^{\circ}$

 $h = -12 \rightarrow 12$


 $k=-9\to9$

 $l = -16 \rightarrow 16$

Figure 1

The constituent ions of diammonium tetrathiotungstate, with the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) $x, \frac{3}{2} - y, z$].

Figure 2

The crystal structure of diammonium tetrathiotungstate, viewed along the c axis (intermolecular hydrogen bonds are shown as dashed lines). Key: W atoms are black circles, S atoms crosshatched circles and N atoms circles shaded bottom left to top right.

range 3.242 (4)–3.5552 (7) Å, while the N···S distances for the second cation are longer, at 3.483 (4)-3.633 (4) Å (Table 2).

Experimental

The title complex was prepared according to the procedure reported by McDonald et al. (1983). The product was obtained as orangeyellow crystalline blocks in 60% yield by passing a rapid stream of H₂S gas for 9 h at 333 K into a solution of tungstic acid (5 g) dissolved in concentrated ammonium hydroxide (40 ml) and water (10 ml). At the end of 9 h, the reaction mixture was filtered and the filtrate was set aside for a day, resulting in the formation of crystals of the title complex.

Crystal data

$(NH_4)_2[WS_4]$
$M_r = 348.17$
Orthorhombic, Pnma
a = 9.6054 (6) Å
b = 6.9863 (5) Å
c = 12.2557 (10) Å
$V = 822.43 (10) \text{ Å}^3$
Z = 4
$D_x = 2.812 \text{ Mg m}^{-3}$

Data collection

Stoe IPDS diffractometer φ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) $T_{\rm min}=0.238,\;T_{\rm max}=0.297$ 7433 measured reflections 1054 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0285P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.018$	+ 1.1841P]
$wR(F^2) = 0.048$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.001$
1054 reflections	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
41 parameters	$\Delta \rho_{\rm min} = -1.36 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.0029 (3)

Table 1

Selected geometric parameters (Å, °).

W1-S2	2.1856 (11)	W1-S1	2.2090 (10)
W1-S3	2.1870 (7)		
S2-W1-S3	109.25 (3)	S2-W1-S1	110.33 (4)
S3 ⁱ -W1-S3	108.23 (4)	\$3-W1-\$1	109.87 (2)

Symmetry code: (i) $x, \frac{3}{2} - y, z$.

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1N1···S2 ⁱⁱ	0.86	2.78	3.278 (3)	118
$N1 - H1N1 \cdot \cdot \cdot S3^{iii}$	0.86	2.83	3.489 (3)	135
$N1 - H1N1 \cdot \cdot \cdot S3^{iv}$	0.86	2.83	3.489 (3)	135
$N1 - H2N1 \cdot \cdot \cdot S2$	0.86	2.57	3.242 (4)	136
$N1 - H2N1 \cdot \cdot \cdot S1$	0.86	2.75	3.439 (3)	139
$N1 - H3N1 \cdot \cdot \cdot S3^{v}$	0.86	2.65	3.414 (3)	149
$N1 - H3N1 \cdot \cdot \cdot S1^v$	0.86	2.93	3.5552 (7)	131
$N2-H1N2 \cdot \cdot \cdot S1$	0.86	2.89	3.483 (4)	128
$N2-H2N2\cdot\cdot\cdot S3^{vi}$	0.86	2.87	3.513 (3)	133
$N2-H2N2\cdots S3^{vii}$	0.86	2.87	3.513 (3)	133
$N2-H2N2\cdot\cdot\cdot S1^{viii}$	0.86	3.03	3.633 (4)	129
$N2 - H3N2 \cdot \cdot \cdot S3^{v}$	0.86	2.82	3.563 (3)	146
$N2-H3N2\cdots S2^{v}$	0.86	2.86	3.5289 (6)	136

Symmetry codes: (ii) $x - \frac{1}{2}, y, \frac{1}{2} - z$; (iii) $\frac{3}{2} - x, 1 - y, z - \frac{1}{2}$; (iv) $\frac{3}{2} - x, \frac{1}{2} + y, z - \frac{1}{2}$; (v) 1 - x, 1 - y, 1 - z; (vi) x - 1, y, z; (vii) $x - 1, \frac{3}{2} - y, z$; (viii) $x - \frac{1}{2}, y, \frac{3}{2} - z$.

The H atoms were located in a difference map and were refined with fixed bond lengths (N-H = 0.86 Å) and fixed isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(N)]$ using a riding model. The maximum electron-density peak is located 0.98 Å from atom W1.

Data collection: IPDS (Stoe & Cie, 1998); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL

inorganic papers

(Bruker, 1998); software used to prepare material for publication: *XCIF* in *SHELXTL*.

This work is supported by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft. BRS thanks the Department of Science and Technology (DST), New Delhi, for financial assistance under grant No. SR/S1/IC-41/2003.

References

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Emirdag-Eanes, M. & Ibers, J. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 484.

Ellermeier, J., Näther, C. & Bensch, W. (1999). Acta Cryst. C55, 1748-1751.

Lapasset, P. J., Chezeau, N. & Belougne, P. (1976). Acta Cryst. B32, 3087–3088.
McDonald, J. W., Friesen, G. D., Rosenhein, L. D. & Newton, W. E. (1983).
Inorg. Chim. Acta, 72, 205–210.

- Raymond, C. C., Dorhout, P. K. & Miller, S. M. (1995). Z. Kristallogr. 210, 775.
- Sasvári, K. (1963). Acta Cryst. 16, 719-724.
- Schwarz, D. E., Rauchfuss, T. B. & Wilson, S. R. (2003). *Inorg. Chem.* 42, 2410–2417.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Srinivasan, B. R., Dhuri, S. N., Näther, C. & Bensch, W. (2003). Acta Cryst. C59, m124-m127.
- Stoe & Cie (1998). *IPDS* (Version 2.89) and *X-SHAPE* (Version 1.03). Stoe & Cie, Darmstadt, Germany.
- Yao, J. & Ibers, J. A. (2004). Acta Cryst. E60, i10-i11.